YOLOv5网络结构逐行代码解读 注意力机制增强实战指南 深度学习模型改进与优化
YOLOv5网络结构逐行代码解读 注意力机制增强实战指南 深度学习模型改进与优化课程介绍
本课程将为您提供注意力机制增强实战指南,帮助您深入学习和应用YOLOv5模型的改进技术。
在这个课程中,我们将探讨如何利用注意力机制来优化YOLOv5目标检测模型。通过实战项目的指导,您将学会如何将注意力机制融入YOLOv5模型中,以提高模型的性能和准确性。
除了理论知识,我们还将结合实际应用案例,演示注意力机制在YOLOv5模型中的应用实践和最佳实践。通过案例分析和实战演示,您将深入了解注意力机制对模型改进的具体影响和优势。
课程目录
├─1 课程介绍.mp4
├─10 训练YOLOv5s.mp4
├─11 SE注意力机制原理.mp4
├─12 添加SE及C3SE.mp4
├─13 CBAM注意力机制原理.mp4
├─14 添加CBAM及C3CBAM.mp4
├─15 ECA注意力机制原理.mp4
├─16 添加ECA及C3ECA.mp4
├─2 YOLOv5简介.mp4
├─3 YOLOv5网络结构.mp4
├─4 YOLOv5的yaml文件.mp4
├─5 安装软件环境及PyTorch(Windows).mp4
├─6 安装软件环境及PyTorch(Ubuntu).mp4
├─7 YOLOv5项目安装.mp4
├─8 准备自己的数据集.mp4
├─9 修改配置文件.mp4
├─17 CA注意力机制原理.mp4
├─18 添加CA及C3CA.mp4
├─yolov5添加注意力机制-ubuntu.pdf
├─yolov5添加注意力机制-windows.pdf
下载地址(百度网盘):
**** Hidden Message *****
学习了,谢谢分享 不错不错,楼主您辛苦了。 不错不错,楼主您辛苦了。 不错不错,楼主您辛苦了。 回复看看下载地址
页:
[1]